OBJECT ORIENTED
PROGRAMMING USING C++

S PROBLEM SOLVING
/ WITH

THE OBJECT
OF PROGRAMMING

Fourth Edition

) }
r ¥ i f L "

=

= ;_;,., LTER SAVITCH

Chapter 9

Separate Compilation
and
Namespaces

Slide 3

@ Overview

= Separate Compilation (9.1)
= Namespaces (9.2)

Slide 4

@ Separate Compilation

= C++ allows you to divide a program Into parts
= Each part can be stored in a separate file

= Each part can be compiled separately

= A class definition can be stored separately from a
program.

= This allows you to use the class in multiple programs

Slide 5

@ ADT Review

B

= An ADT Is a class defined to separate the
Interface and the implementation

= All member variables are private

= The class definition along with the function and
operator declarations are grouped together as the
Interface of the ADT

= Group the implementation of the operations together
and make them unavailable to the programmer
using the ADT

Slide 6

@ The ADT Interface

= The mterface of the ADT Includes
= The class definition
= The declarations of the basic operations which can be
one of the following
= Public member functions
= Friend functions

= Ordinary functions
= Overloaded operators

= | he function comments

Slide 7

© The ADT Implementation

= The |mplementat|on of the ADT includes

= The function definitions
= The public member functions
= The private member functions
= Non-member functions
= Private helper functions

= Overloaded operator definitions
= Member variables
= Other items required by the definitions

Slide 8

© Separate Files

= In C++ the ADT Interface and implementation
can be stored In separate files
= The interface file stores the ADT interface

= The implementation file stores the ADT
Implementation

Slide 9

@ A Minor Compromise

= The public part of the class definition is part of
the ADT Interface

= The private part of the class definition is part of
the ADT implementation
= This would hide it from those using the ADT

= C++ does not allow splitting the public and
private parts of the class definition across files

= The entire class definition is usually in the
Interface file

Slide 10

© Case Study: DigitalTime

= The interface file of the DigitalTime ADT class
contains the class definition

= | he values of the class are:
= Time of day, such as 9:30, in 24 hour notation

= The public members are part of the interface

= The private members are part of the implementation

= The comments In the file should provide all the
details needed to use the ADT

Slide 11

© Naming The Interface File

= The DigitalTime ADT interface Is stored In a
file named dtime.h

= The .h suffix means this is a header file
= Interface files are always header files

= A program using dtime.h must include it using
an include directive

#include "dtime.h"

Display 9.1

Slide 12

Hinclude " "or< > ?

= 10 mclude a predefined header file use < and >
#include <iostream>

= < and > tells the compiler to look where the system
stores predefined header files

= To Include a header file you wrote, use " and "
#include ""dtime.h™’

= "and " usually cause the compiler to look
In the current directory for the header file

Slide 13

@ The Implementation File

s Contains the definitions of the ADT functions

= Usually has the same name as the header file but
a different suffix

= Since our header file i1s named dtime.h, the
implementation file is named dtime.cpp

= SUffix depends on your system
(some use .cxx or .CPP)

Slide 14

] fincl-ude "dtime.h"

= The implementation file requires an include
directive to include the interface file:

#include "'dtime.h""

DIS
DIS
DIS
DIS

ay 9.2 (1)
ay 9.2 (2)
ay 9.2 (3)
ay 9.2 (4)

O 1O 0O | O

Slide 15

@ The Application File

= The Application file is the file that contains the
program that uses the ADT
= Itisalso called a driver file

= Must use an include directive to include the
Interface file:
#include "dtime.h"

Display 9.3

Slide 16

© Running The Program

= Basic steps required to run a program:
(Detalls vary from system to system!)

= Compile the implementation file
= Compile the application file

= Link the files to create an executable program using
a utility called a linker

= Linking iIs often done automatically

Slide 17

© Complle dtime.h ?

= The mterface file 1s not compiled separately

= The preprocessor replaces any occurrence of
#include "dtime.h" with the text of dtime.h before
compiling

= Both the implementation file and the
application file contain #include "dtime.h"

= The text of dtime.h is seen by the compiler in each of
these files

= There is no need to compile dtime.h separately

Slide 18

© Why Three Files?

= Using separate files permits

= The ADT to be used in other programs without
rewriting the definition of the class for each

= Implementation file to be compiled once even
If multiple programs use the ADT

= Changing the implementation file does not
require changing the program using the ADT

Slide 19

@ Reusable Components

= An ADT coded In separate files can be used
over and over

= The reusability of such an ADT class

= Saves effort since It does not need to be
= Redesigned
=« Recoded
= Retested

= s likely to result in more reliable components

Slide 20

© Multlple Classes

= A program may use several classes

= Each could be stored in 1ts own interface and
Implementation files
= Some files can "include" other files, that include still others

= It 1s possible that the same interface file could be
Included in multiple files

s C++ does not allow multiple declarations of a class

= The #ifndef directive can be used to prevent
multiple declarations of a class

Slide 21

© Introduction to #ifndef

= 10 prevent multiple declarations of a class,
we can use these directives:

» #define DTIME_H
adds DTIME_H to a list indicating DTIME_H has
been seen

» #ifndef DTIME_H
checks to see iIf DTIME_H has been defined

s Hendif
If DTIME_H has been defined, skip to #endif

Slide 22

© Using #1tndet

= Consideft—his- code In the interface file:

UUe ___, 4ifndef DTIME H
#define DTIME_H
< The DigitalTime class

definition goes here>
#endif

= [he first time a #include "'dtime.h"" Is found,
DTIME_H and the class are defined

= The next time a #include "dtime.h"" Is found,
all lines between #ifndef and #endif are skipped

false

Slide 23

@ Why DTIME_H?

s DTIME _H IS the normal convention for
creating an identifier to use with ifndef

= It 1s the file name in all caps
= Use' 'insteadof'.’

= You may use any other identifier, but will make
your code more difficult to read

Display 9.4

Slide 24

© Deflnlng Libraries

= You can create your own libraries of functions

= You do not have to define a class to use separate
files

= If you have a collection of functions...
= Declare them in a header file with their comments
= Define them in an implementation file

= Use the library files just as you use your class interface
and implementation files

Slide 25

© Section 9.1 Conclusion

s Can youv

= Determine which belongs to the interface,
Implementation or application files?
= Class definition

= Declaration of a non-member function used as an
operation of the ADT

= Definition of a member function
= The main part of the program

= Describe the difference between a C++ class and an
ADT?

Slide 26

9.2

© Namespaces

= A namespace IS a collection of name definitions,
such as class definitions and variable declarations

= |f a program uses classes and functions written by
different programmers, it may be that the same name
IS used for different things

= Namespaces help us deal with this problem

Slide 27

@ The Usmg Directive

= #mclude <|ostream> places names such as cin
and cout In the std namespace

= The program does not know about names in the
std namespace until you add
using namespace std,;

(If you do not use the std namespace, you can
define cin and cout to behave differently)

Slide 28

@ The Global Namespace

= Code you write Is In a namespace

= It Is In the global namespace unless you specify
a hamespace

= The global namespace does not require the
using directive

Slide 29

© Narpe Conflicts

If the same name Is used In two namespaces
= The namespaces cannot be used at the same time

= Example: If my_function is defined In
namespaces nsl and ns2, the two versions of
my_function could be used in one program
by using local using directives this way:

{

}

{

using namespace nsl; using namespace ns2;
my_function(); my_function();

}

Slide 30

C Scope Rules For using

= A block is a list of statements enclosed In { }s

= The scope of a using directive is the block In
which It appears

= A using directive placed at the beginning of a
file, outside any block, applies to the entire file

Slide 31

C Creating a Namespace

= To place code in a namespace

= Use a namespace grouping
= Namespace Name_Space Name

{

}
= T0 use the namespace created

= Use the appropriate using directive
= using namespace Name_Space Name;

Some_Code

Slide 32

.MD Namespaces:
Declaring a Function

= To add a function to a namespace

= Declare the function in a namespace grouping
namespace savitchl

{
}

volid greeting();

Slide 33

.MD Namespaces:
Defining a Function

= To define a function declared In a namespace
= Define the function in a namespace grouping

namespace savitchl

{
void greeting()

{

cout << ""Hello from namespace savitchl.\n";

}
}

Slide 34

.MD Namespaces:
Using a Function

e

= To use a function defined in a namespace

= Include the using directive in the program where
the namespace Is to be used

= Call the function as the function would normally

be called
Int main()
{

{
using namespace savitchl;
greeting();

h

Using directive's scope Display 9.5 (1-2)

Slide 35

@ A Namespace Problem

= Suppose you have the namespaces below:

namespace nsl namespace ns2
{ {
funl(); fun2();
my_function(); my_function();
} }

= IS there an easier way to use both namespaces
considering that my_function Is in both?

Slide 36

C Quallfylng Names

= Using declaratlons (not directives) allow us to
select individual functions to use from
namespaces
= using nsl::funl; //makes only funl in nsl available

= The scope resolution operator identifies a namespace here
=« Means we are using only namespace nsl's version of funl

= If you only want to use the function once, call it
like this

nsl::funl();

Slide 37

@ Qualifiying Parameter Names

e St

= To qualify thé type of a parameter with a
using declaration

= Use the namespace and the type name
Int get_number (std::istream input_stream)

= IStream is the istream defined in namespace std

=« If istream is the only name needed from namespace std,
then you do not need to use
using namespace std;

Slide 38

..,.,j Directive/Declaration
(Optional)

= A using declaration (using std::cout;) makes

only one name available from the namespace

= A using directive makes all the names in the
namespace available

Slide 39

© A Subtle Point (Optional)

= A using directive potentially introduces a name
= If nsl and ns2 both define my_function,

using namespace nsi;
using namespace ns2;

Is OK, provided my_function is never used!

Slide 40

© A Subtle Point Continued

= A usmg declaratlon Introduces a name into your
code: no other use of the name can be made

using nsl::my_function;
using ns2::my_function;

IS 1llegal, even if my_function is never used

Slide 41

@ Unnamed Namespaces

= As we haVe done helper functions so far, they
are not really hidden (Display 9.2)

= We would like them to be local to the implementation
file to implement information hiding

= The unnamed namespace can hide helper
functions

= Names defined in the unnamed namespace are
local to the compilation unit

= A compilation unit is a file (such as an implementation file)
plus any file(s) #included in the file

Slide 42

© The unnamed grouping

m Every compllatlon unit has an unnamed
namespace

= [he namespace grouping Is written as any other
namespace, but no name Is given:

namespace

{

void sample_function()

} /lunnamed namespace

Slide 43

.MD Names In The
© unnamed namespace

m Names I the unnamed namespace
= Can be reused outside the compilation unit

= Can be used in the compilation unit
without a namespace qualifier

= The rewritten version of the DigitalTime
Interface Is found In|Display 9.6 While the

Implementation file 1s shown In Display 9-7 (L)

Display 9.7 (2)

Slide 44

..,.,j Namespaces
In An Application

= The application file for the DigitalTime ADT Is
shown In | pisplay 9.8 (1)
Display 9.8 (2)

Slide 45

© Compilation Units Overlap

= A header file i1s #included in two files
= [t 1s In two compilation units
= Participates in two unnamed namespaces!

= Thisis OK as long as each of the compilation
units makes sense independent of the other
= A name in the header file's unnamed namespace

cannot be defined again in the unnamed namespace of the
Implementation or application file

Slide 46

© Namlng Namespaces

= To avold choosing a name for a namespace that
has already been used

= Add your last name to the name of the namespace

= Or, use some other unique string

Slide 47

© Global or unnamed?

m Names mthe global namespace have global
scope (all files)

= They are available without a qualifier to all the
program files

= Names In the unnamed namespace are local to
a compilation unit

= They are available without a qualifier within the
compilation unit

Slide 48

C Section 9.2 Conclusion

= Canyou

= Explain the purpose of using interface and
Implementation files?

= Describe a namespace?

= Demonstrate three ways to use the names in a
namespace?

Slide 49

C Chapter 9 -- End

@ D|Sp|a$y91 <Back Next>

Interface File for DigitalTime

//Header file dtime.h: This is the INTERFACE for the class DigitalTime.
//Values of this type are times of day. The values are input and output in
//24-hour notation, as in 9:30 for 9:30 AM and 14:45 for 2:45 PM.

#i n'c1 ude <iostream> ~S——_______ forthedefinition of the types

using namespace std; istream and ostream, which

- . are used as parameter types
class DigitalTime

{

public:
friend bool operator ==(const DigitalTime& timel, const DigitalTime& time2);
//Returns true if timel and time2 represent the same time;
//otherwise, returns false.

DigitalTime(int the_hour, int the_minute);
//Precondition: 0 <= the_hour <= 23 and 0 <= the_minute <= 59.
//Initializes the time value to the_hour and the _minute.

DigitalTime();
//Initializes the time value to 0:00 (which is midnight).

void advance(int minutes_added);
//Precondition: The object has a time value.
//Postcondition: The time has been changed to minutes_added minutes later.

void advance(int hours_added, int minutes_added);
//Precondition: The object has a time value.
//Postcondition: The time value has been advanced
//hours_added hours plus minutes_added minutes.

friend istream& operator >>(istream& ins, DigitalTime& the_object);
//0verloads the >> operator for input values of type DigitalTime.
//Precondition: If ins is a file input stream, then ins has already been
//connected to a file.

friend ostream& operator <<(ostream& outs, const DigitalTime& the_object);
//0verloads the << operator for output values of type DigitalTime.
//Precondition: If outs is a file output stream, then outs has already been
//connected to a file.

private: This is part of the implementation.

It is not part of the interface.

The word private indicates that

this is not part of the public interface.

int hour; B ——
int minute;

1

Slide 51

<Back Next>

//Implementation file dtime.cpp (Your system may require some

//suffix other than .cpp): This is the IMPLEMENTATION of the ADT DigitalTime.
//The interface for the class DigitalTime is in the header file dtime.h.
#include <iostream>

#include <cctype>

#include <cstdlib>

#include "dtime.h"

using namespace std;

mj Display 9.2
(1/4)

Implementation File for DigitalTime (part 1 of 4)

//These FUNCTION DECLARATIONS are for use in the definition of
//the overloaded input operator >>:

void read_hour(istream& ins, int& the_hour);

//Precondition: Next input in the stream ins is a time in 24-hour notation,
//1ike 9:45 or 14:45.

//Postcondition: the_hour has been set to the hour part of the time.

//The colon has been discarded and the next input to be read is the minute.

void read_minute(istream& ins, int& the_minute);
//Reads the minute from the stream ins after read_hour has read the hour.

int digit_to_int(char c);
//Precondition: ¢ is one of the digits ’0’ through ’'9’.
//Returns the integer for the digit; for example, digit_to_int(’3’) returns 3.

bool operator ==(const DigitalTime& timel, const DigitalTime& time2)
{
return (timel.hour == time2.hour && timel.minute == time2.minute);

}

//Uses iostream and cstdlib:
DigitalTime::DigitalTime(int the_hour, int the_minute)

{
if (the_hour < 0 || the_hour > 23 || the_minute < 0 || the_minute > 59)
{
cout << "Illegal argument to DigitalTime constructor.";
exit(l);
}

Slide 52

=== Display 9.2
) (2/4) { Back] | Next

Implementation File for DigitalTime (part 2 of 4)

else

{
hour = the_hour;
minute = the_minute;

}
}
DigitalTime::DigitalTime() : hour(0), minute(0)
{
//Body intentionally empty.
}
void DigitalTime::advance(int minutes_added)
{
int gross_minutes = minute + minutes_added;
minute = gross_minutes¥%60;
int hour_adjustment = gross_minutes/60;
hour = (hour + hour_adjustment)%24;
}
void DigitalTime: :advance(int hours_added, int minutes_added)
{
hour = (hour + hours_added)%24;
advance(minutes_added);
}

//Uses iostream:
ostream& operator <<(ostream& outs, const DigitalTime& the_object)

{
outs << the_object.hour << ’:7;
if (the_object.minute < 10)
outs << '0’;
outs << the_object.minute;
return outs;
}

Slide 53

<Back Next

Implementation File for DigitalTime (part 3 of 4)

//Uses iostream:
istream& operator >>(istream& ins, DigitalTime& the_object)

{
read_hour(ins, the_object.hour);
read_minute(ins, the_object.minute);
return ins;

}

int digit_to_int(char c)

{
return (int(c) - int(C’0’));

}

//Uses jostream, cctype, and cstdlib:
void read_minute(istream& ins, 7nt& the_minute)

{
char cl, c2;
ins >> cl >> c2;
if (1 (isdigit(cl) && isdigit(c2)))
{
cout << "Error illegal input to read_minute\n";
exit(1l);
}
the_minute = digit_to_int(c1)*10 + digit_to_int(c2);
if (the_minute < 0 || the_minute > 59)
{
cout << "Error illegal input to read_minute\n";
exit(l);
1
1

Slide 54

<Back

Implementation File for DigitalTime (part 4 of 4)

//Uses iostream, cctype, and cstdlib:
void read_hour(istream& ins, int& the_hour)

{

char cl, c2;
ins >> cl >> c2;

if (1(isdigit(cl) && (isdigit(c2) || €2 == ":>)))
{
cout << "Error illegal input to read_hour\n";
exit(l);
}
if (isdigit(cl) && c2 == ’:’)
{
the_hour = digit_to_int(cl);
}
else //(isdigit(cl) && isdigit(c2))
{
the_hour = digit_to_int(cl)*10 + digit_to_int(c2);
ins >> c2;//discard ’:’
if (c2 !=":")
{
cout << "Error illegal input to read_hour\n";
exit(l);
}
}
if (the_hour < 0 || the_hour > 23)
{
cout << "Error illegal input to read_hour\n";
exit(1l);
}

Next

Slide 55

@ Display 9.3 e

Application File Using DigitalTime

//Application file timedemo.cpp (your system may require some suffix
//other than .cpp): This program demonstrates use of the class DigitalTime.
#include <iostream>

#include "dtime.h"

using namespace std;

int main()

{
DigitalTime clock, old_clock;
cout << "Enter the time in 24-hour notation: ";
cin >> clock;
old_clock = clock;
clock.advance(15);
if (clock == old_clock)
cout << "Something is wrong.";
cout << "You entered " << old_clock << endl;
cout << "15 minutes later the time will be "
<< clock << endl;
clock.advance(2, 15);
cout << "2 hours and 15 minutes after that\n"
<< "the time will be "
<< clock << endl;
return 0;
}

Sample Dialogue

Enter the time in 24-hour notation: 11:15
You entered 11:15

15 minutes later the time will be 11:30

2 hours and 15 minutes after that

the time will be 13:45

Slide 56

@ DlSpIay 94 <Back @

Avoiding Multiple Definitions of a Class

//Header file dtime.h: This i1s the INTERFACE for the class DigitalTime.
//Values of this type are times of day. The values are input and output 1in
//24-hour notation, as in 9:30 for 9:30 AM and 14:45 for 2:45 PM.

#1fndef DTIME H
#define DTIME_H

#include <iostream>
using namespace std;

class DigitalTime
{

<The definition of the class DigitalTime is the same as in Display 9.1.>

}s

#endif //DTIME H

Slide 57

=== Display 9.5
) (1/2) <Back Next

Namespace Demonstration (part T of 2)

#include <iostream>
using namespace std;

namespace savitchl

{

void greeting();
1
namespace savitch2
{

void greeting();
}

void big_greeting();

int main() Names in this block use

{ definitions in namespaces
{ savitch2, std, and the
using namespace savitch2; global namespace.
greeting();
}
{ Names in this block use defini-

. . tions in namespaces savitchl,
using namespace savitchl; / std, and the global namespace.
greeting();

}

Names out here only use definitions in
—a— namespace std and the global

namespace.

big_greeting();

return 0;

! Slide 58

Display 9.5
(2/2)

<Back Next

Namespace Demonstration (part 2 of 2)

namespace savitchl

{
void greeting()
{
cout << "Hello from namespace savitchl.\n";
}
}
namespace savitch?2
{
void greeting()
{
cout << "Greetings from namespace savitch2.\n";
}
}
void big_greeting()
{
cout << "A Big Global Hello!\n";
}

Sample Dialogue

Greetings from namespace savitch2.
Hello from namespace savitchl.
A Big Global Hello!

Slide 59

@ DlSpIay96 <Back Next

Placing a Class in a Namespace—Header File

//Header file dtime.h: This is the interface for the class DigitalTime.
//Values of this type are times of day. The values are input and output in
//24-hour notation, as in 9:30 for 9:30 AM and 14:45 for 2:45 PM.

#ifndef DTIME_H
#define DTIME_H

#include <iostream>

using namespace std; One grouping for the namespace dtimesavitch.

Another grouping for the namespace dtimesavitch
namespace dtimesavitch / is in the implementation file dtime. cpp.
{

class DigitalTime

{
<The definition of the class DigitalTime is the same as in Display 9.1.>

}s
}//end dtimesavitch

#endif //DTIME_H

Slide 60

== Display 9.7
) (1/2) __ <Back Next

Placing a Class in a Namespace—Implementation File (parf T of 2)

//Implementation file dtime.cpp (your system may require some

//suffix other than .cpp): This is the IMPLEMENTATION of the ADT DigitalTime.
//The interface for the class DigitalTime is in the header file dtime.h.
#include <iostream>

#include <cctype>

#include <cstdlib>

#include "dtime.h"

using namespace std;)
One grouping for the unnamed

/ namespace
namespace

//These function declarations are for use in the definition of
//the overloaded input operator >>:

void read_hour(istream& ins, int& the_hour);

//Precondition: Next input in the stream ins is a time in 24-hour notation,
//1ike 9:45 or 14:45.

//Postcondition: the_hour has been set to the hour part of the time.

//The colon has been discarded and the next input to be read is the minute.

void read_minute(istream& ins, int& the_minute);
//Reads the minute from the stream ins after read_hour has read the hour.

int digit_to_int(char c);

//Precondition: c¢ is one of the digits ’0’ through ’9’.

//Returns the integer for the digit; for example, digit_to_int(’3’) returns 3.
}//unnamed namespace

One grouping for the namespace dtimesavitch.
namespace dtimesavitch / Another grouping is in the file dtime.h.
{

bool operator ==(const DigitalTime& timel, const DigitalTime& time2)
<The rest of the definition of == is the same as in Display 9.2.>

DigitalTime::DigitalTime()
<The rest of the definition of this constructor is the same as in Display 9.2.>

DigitalTime::DigitalTime(int the_hour, int the_minute)
<The rest of the definition of this constructor is the same as in Display 9.2.> S I i d e 6 1

Display 9.7
2/2)

Placing a Class in a Namespace—Implementation File (part 2 of 2)

<Back Next

void DigitalTime::advance(int minutes_added)
<The rest of the definition of this advance function is the same as in Display 9.2.>

void DigitalTime::advance(int hours_added, int minutes_added)
<The rest of the definition of this advance function is the same as in Display 9.2.>

ostream& operator <<(ostream& outs, const DigitalTime& the_object)
<The rest of the definition of << is the same as in Display 9.2.>

//Uses jostream and functions in the unnamed namespace:
istream& operator >>(istream& ins, DigitalTime& the_object)

{
read_hour(ins, the_object.hour); Functions defined in the unnamed
read_minute(ins, the_object.minute); a— namespace are local to this compila-
. n tion unit (this file and included files).
return 1ns; . .
They can be used anywhere in this
}) . file, but have no meaning outside this
} //dtimesavitch compilation unit.

Another grouping for the

/ unnamed namespace.
namespace

{
int digit_to_int(char c)
<The rest of the definition of digit_to_int is the same as in Display 9.2.>

void read_minute(istream& ins, int& the_minute)
<The rest of the definition of read_minute is the same as in Display 9.2.>

void read_hour(istream& ins, int& the_hour)
<The rest of the definition of read_hour is the same as in Display 9.2.>

}//unnamed namespace

Slide 62

Display 9.8
(1/2)

<Back Next

Placing a Class in a Namespace—Application Program (part T of 2)

//This is the application file: timedemo.cpp. This program
//demonstrates hiding the helping functions in an unnamed namespace.

#include <iostream> If you place the using directives here, then

#include "dtime.h" / the program behavior will be the same.

void read_hour(int& the_hour);

int main()

{
using namespace std;
using namespace dtimesavitch;
int the_hour; This is a different function read_hour than
read_hour(the_hour); the one in the implementation filedtime. cpp
— — D o
(shown in Display 9.7).
DigitalTime clock(the_hour, 0), old_clock;
old_clock = clock;
clock.advance(15);
if (clock == old_clock)
cout << "Something is wrong.";

cout << "You entered " << old_clock << endl;
cout << "15 minutes later the time will be "

<< clock << endl;
clock.advance(2, 15);
cout << "2 hours and 15 minutes after that\n"

<< "the time will be "

<< clock << endl;
return 0;

}

Slide 63

=== Display 9.8
@ . ~ (Back Nedt

Placing a Class in a Namespace—Application Program (part 2 of 2)

void read_hour(int& the_hour)

{
using namespace std;
cout << "Let's play a time game.\n"
<< "Let's pretend the hour has just changed.\n"
<< "You may write midnight as either 0 or 24,\n"
<< "but I will always write 1t as 0.\n"
<< "Enter the hour as a number (0 to 24): ";
cin >> the_hour;
1f (the_hour == 24)
the_hour = 0;
}

Slide 64

