
OBJECT ORIENTED
PROGRAMMING USING C++

1

Slide 2

Slide 3

Chapter 9

Created by David Mann, North Idaho College

Separate Compilation
and

Namespaces

Slide 4

Overview

 Separate Compilation (9.1)
 Namespaces (9.2)

Slide 5

Separate Compilation
 C++ allows you to divide a program into parts

 Each part can be stored in a separate file

 Each part can be compiled separately

 A class definition can be stored separately from a
program.

 This allows you to use the class in multiple programs

9.1

Slide 6

ADT Review
 An ADT is a class defined to separate the

interface and the implementation
 All member variables are private
 The class definition along with the function and

operator declarations are grouped together as the
interface of the ADT

 Group the implementation of the operations together
and make them unavailable to the programmer
using the ADT

Slide 7

The ADT Interface
 The interface of the ADT includes

 The class definition
 The declarations of the basic operations which can be

one of the following
 Public member functions
 Friend functions
 Ordinary functions
 Overloaded operators

 The function comments

Slide 8

The ADT Implementation
 The implementation of the ADT includes

 The function definitions
 The public member functions
 The private member functions
 Non-member functions
 Private helper functions

 Overloaded operator definitions
 Member variables
 Other items required by the definitions

Slide 9

Separate Files
 In C++ the ADT interface and implementation

can be stored in separate files
 The interface file stores the ADT interface
 The implementation file stores the ADT

implementation

Slide 10

A Minor Compromise
 The public part of the class definition is part of

the ADT interface
 The private part of the class definition is part of

the ADT implementation
 This would hide it from those using the ADT

 C++ does not allow splitting the public and
private parts of the class definition across files
 The entire class definition is usually in the

interface file

Slide 11

Case Study: DigitalTime
 The interface file of the DigitalTime ADT class

contains the class definition
 The values of the class are:

 Time of day, such as 9:30, in 24 hour notation
 The public members are part of the interface
 The private members are part of the implementation
 The comments in the file should provide all the

details needed to use the ADT

Slide 12

Naming The Interface File
 The DigitalTime ADT interface is stored in a

file named dtime.h
 The .h suffix means this is a header file
 Interface files are always header files

 A program using dtime.h must include it using
an include directive

#include "dtime.h"
Display 9.1

Slide 13

#include " " or < > ?
 To include a predefined header file use < and >

#include <iostream>
 < and > tells the compiler to look where the system

stores predefined header files
 To include a header file you wrote, use " and "

#include "dtime.h"
 " and " usually cause the compiler to look

in the current directory for the header file

Slide 14

The Implementation File
 Contains the definitions of the ADT functions
 Usually has the same name as the header file but

a different suffix
 Since our header file is named dtime.h, the

implementation file is named dtime.cpp
 Suffix depends on your system

(some use .cxx or .CPP)

Slide 15

#include "dtime.h"
 The implementation file requires an include

directive to include the interface file:

#include "dtime.h"

Display 9.2 (1)
Display 9.2 (2)
Display 9.2 (3)
Display 9.2 (4)

Slide 16

The Application File
 The Application file is the file that contains the

program that uses the ADT
 It is also called a driver file
 Must use an include directive to include the

interface file:
#include "dtime.h"

Display 9.3

Slide 17

Running The Program
 Basic steps required to run a program:

(Details vary from system to system!)

 Compile the implementation file

 Compile the application file

 Link the files to create an executable program using
a utility called a linker
 Linking is often done automatically

Slide 18

Compile dtime.h ?
 The interface file is not compiled separately

 The preprocessor replaces any occurrence of
#include "dtime.h" with the text of dtime.h before
compiling

 Both the implementation file and the
application file contain #include "dtime.h"
 The text of dtime.h is seen by the compiler in each of

these files
 There is no need to compile dtime.h separately

Slide 19

Why Three Files?
 Using separate files permits

 The ADT to be used in other programs without
rewriting the definition of the class for each

 Implementation file to be compiled once even
if multiple programs use the ADT

 Changing the implementation file does not
require changing the program using the ADT

Slide 20

Reusable Components
 An ADT coded in separate files can be used

over and over
 The reusability of such an ADT class

 Saves effort since it does not need to be
 Redesigned
 Recoded
 Retested

 Is likely to result in more reliable components

Slide 21

Multiple Classes
 A program may use several classes

 Each could be stored in its own interface and
implementation files
 Some files can "include" other files, that include still others

 It is possible that the same interface file could be
included in multiple files

 C++ does not allow multiple declarations of a class
 The #ifndef directive can be used to prevent

multiple declarations of a class

Slide 22

Introduction to #ifndef
 To prevent multiple declarations of a class,

we can use these directives:
 #define DTIME_H

adds DTIME_H to a list indicating DTIME_H has
been seen

 #ifndef DTIME_H
checks to see if DTIME_H has been defined

 #endif
If DTIME_H has been defined, skip to #endif

Slide 23

Using #ifndef
 Consider this code in the interface file:

#ifndef DTIME_H
#define DTIME_H
< The DigitalTime class

definition goes here>
#endif

 The first time a #include "dtime.h" is found,
DTIME_H and the class are defined

 The next time a #include "dtime.h" is found,
all lines between #ifndef and #endif are skipped

true false

Slide 24

Why DTIME_H?
 DTIME_H is the normal convention for

creating an identifier to use with ifndef
 It is the file name in all caps
 Use ' _ ' instead of ' . '

 You may use any other identifier, but will make
your code more difficult to read

Display 9.4

Slide 25

Defining Libraries
 You can create your own libraries of functions

 You do not have to define a class to use separate
files

 If you have a collection of functions…
 Declare them in a header file with their comments
 Define them in an implementation file
 Use the library files just as you use your class interface

and implementation files

Slide 26

Section 9.1 Conclusion
 Can you

 Determine which belongs to the interface,
implementation or application files?
 Class definition
 Declaration of a non-member function used as an

operation of the ADT
 Definition of a member function
 The main part of the program

 Describe the difference between a C++ class and an
ADT?

Slide 27

Namespaces
 A namespace is a collection of name definitions,

such as class definitions and variable declarations

 If a program uses classes and functions written by
different programmers, it may be that the same name
is used for different things

 Namespaces help us deal with this problem

9.2

Slide 28

The Using Directive
 #include <iostream> places names such as cin

and cout in the std namespace
 The program does not know about names in the

std namespace until you add
using namespace std;

(if you do not use the std namespace, you can
define cin and cout to behave differently)

Slide 29

The Global Namespace
 Code you write is in a namespace

 it is in the global namespace unless you specify
a namespace

 The global namespace does not require the
using directive

Slide 30

Name Conflicts
 If the same name is used in two namespaces

 The namespaces cannot be used at the same time
 Example: If my_function is defined in

namespaces ns1 and ns2, the two versions of
my_function could be used in one program
by using local using directives this way:

{
using namespace ns1;
my_function();

}

{
using namespace ns2;
my_function();

}

Slide 31

Scope Rules For using
 A block is a list of statements enclosed in { }s
 The scope of a using directive is the block in

which it appears
 A using directive placed at the beginning of a

file, outside any block, applies to the entire file

Slide 32

Creating a Namespace
 To place code in a namespace

 Use a namespace grouping
 namespace Name_Space_Name

{
Some_Code

}

 To use the namespace created
 Use the appropriate using directive

 using namespace Name_Space_Name;

Slide 33

Namespaces:
Declaring a Function

 To add a function to a namespace
 Declare the function in a namespace grouping

namespace savitch1
{

void greeting();
}

Slide 34

Namespaces:
Defining a Function

 To define a function declared in a namespace
 Define the function in a namespace grouping

namespace savitch1
{

void greeting()
{

cout << "Hello from namespace savitch1.\n";
}

}

Slide 35

Namespaces:
Using a Function

 To use a function defined in a namespace
 Include the using directive in the program where

the namespace is to be used
 Call the function as the function would normally

be called
int main()

{
{

using namespace savitch1;
greeting();

}
Using directive's scope Display 9.5 (1-2)

Slide 36

A Namespace Problem
 Suppose you have the namespaces below:

 Is there an easier way to use both namespaces
considering that my_function is in both?

namespace ns1
{

fun1();
my_function();

}

namespace ns2
{

fun2();
my_function();

}

Slide 37

Qualifying Names
 Using declarations (not directives) allow us to

select individual functions to use from
namespaces
 using ns1::fun1; //makes only fun1 in ns1 available

 The scope resolution operator identifies a namespace here
 Means we are using only namespace ns1's version of fun1

 If you only want to use the function once, call it
like this

ns1::fun1();

Slide 38

Qualifiying Parameter Names
 To qualify the type of a parameter with a

using declaration
 Use the namespace and the type name

int get_number (std::istream input_stream)
…

 istream is the istream defined in namespace std
 If istream is the only name needed from namespace std,

then you do not need to use
using namespace std;

Slide 39

Directive/Declaration
(Optional)

 A using declaration (using std::cout;) makes
only one name available from the namespace

 A using directive makes all the names in the
namespace available

Slide 40

A Subtle Point (Optional)
 A using directive potentially introduces a name
 If ns1 and ns2 both define my_function,

using namespace ns1;
using namespace ns2;

is OK, provided my_function is never used!

Slide 41

A Subtle Point Continued
 A using declaration introduces a name into your

code: no other use of the name can be made

using ns1::my_function;
using ns2::my_function;

is illegal, even if my_function is never used

Slide 42

Unnamed Namespaces
 As we have done helper functions so far, they

are not really hidden (Display 9.2)
 We would like them to be local to the implementation

file to implement information hiding
 The unnamed namespace can hide helper

functions
 Names defined in the unnamed namespace are

local to the compilation unit
 A compilation unit is a file (such as an implementation file)

plus any file(s) #included in the file

Slide 43

The unnamed grouping
 Every compilation unit has an unnamed

namespace
 The namespace grouping is written as any other

namespace, but no name is given:

namespace
{

void sample_function()
…

} //unnamed namespace

Slide 44

Names In The
unnamed namespace

 Names in the unnamed namespace
 Can be reused outside the compilation unit
 Can be used in the compilation unit

without a namespace qualifier
 The rewritten version of the DigitalTime

interface is found in while the

implementation file is shown in

Display 9.6

Display 9.7 (1)
Display 9.7 (2)

Slide 45

Namespaces
In An Application

 The application file for the DigitalTime ADT is
shown in Display 9.8 (1)

Display 9.8 (2)

Slide 46

Compilation Units Overlap
 A header file is #included in two files

 It is in two compilation units
 Participates in two unnamed namespaces!
 This is OK as long as each of the compilation

units makes sense independent of the other
 A name in the header file's unnamed namespace

cannot be defined again in the unnamed namespace of the
implementation or application file

Slide 47

Naming Namespaces
 To avoid choosing a name for a namespace that

has already been used
 Add your last name to the name of the namespace

 Or, use some other unique string

Slide 48

Global or unnamed?
 Names in the global namespace have global

scope (all files)
 They are available without a qualifier to all the

program files
 Names in the unnamed namespace are local to

a compilation unit
 They are available without a qualifier within the

compilation unit

Slide 49

Section 9.2 Conclusion
 Can you

 Explain the purpose of using interface and
implementation files?

 Describe a namespace?

 Demonstrate three ways to use the names in a
namespace?

Slide 50

Chapter 9 -- End

Slide 51

Display 9.1 Back Next

Slide 52

Display 9.2
(1/4) Back Next

Slide 53

Display 9.2
(2/4) Back Next

Slide 54

Display 9.2
(3/4) Back Next

Slide 55

Display 9.2
(4/4) Back Next

Slide 56

Display 9.3 Back Next

Slide 57

Display 9.4 Back Next

Slide 58

Display 9.5
(1/2) Back Next

Slide 59

Display 9.5
(2/2) Back Next

Slide 60

Display 9.6 Back Next

Slide 61

Display 9.7
(1/2) Back Next

Slide 62

Display 9.7
(2/2) NextBack

Slide 63

Display 9.8
(1/2) Back Next

Slide 64

Display 9.8
(2/2) Back Next

