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and 
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Overview

 Separate Compilation (9.1)
 Namespaces (9.2)
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Separate Compilation
 C++ allows you to divide a program into parts

 Each part can be stored in a separate file

 Each part can be compiled separately

 A class definition can be stored separately from a 
program.

 This allows you to use the class in multiple programs

9.1
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ADT Review
 An ADT is a class defined to separate the

interface and the implementation
 All member variables are private
 The class definition along with the function and 

operator declarations are grouped together  as the
interface of the ADT

 Group the implementation of the operations together
and make them unavailable to the programmer 
using the ADT
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The ADT Interface
 The interface of the ADT includes

 The class definition
 The declarations of the basic operations which can be

one of the following
 Public member functions 
 Friend functions
 Ordinary functions
 Overloaded operators

 The function comments
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The ADT Implementation
 The implementation of the ADT includes

 The function definitions
 The public member functions
 The private member functions
 Non-member functions
 Private helper functions

 Overloaded operator definitions
 Member variables
 Other items required by the definitions
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Separate Files
 In C++ the ADT interface and implementation 

can be stored in separate files
 The interface file stores the ADT interface
 The implementation file stores the ADT 

implementation
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A Minor Compromise
 The public part of the class definition is part of 

the ADT interface
 The private part of the class definition is part of 

the ADT implementation
 This would hide it from those using the ADT

 C++ does not allow splitting the public and
private parts of the class definition across files
 The entire class definition is usually in the 

interface file
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Case Study: DigitalTime
 The interface file of the DigitalTime  ADT class

contains the class definition
 The values of the class are:

 Time of day, such as 9:30, in 24 hour notation
 The public members are part of the interface
 The private members are part of the implementation
 The comments in the file should provide all the 

details needed to use the ADT
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Naming The Interface File
 The DigitalTime ADT interface is stored in a 

file named dtime.h
 The .h suffix means this is a header file
 Interface files are always header files

 A program using dtime.h must include it using
an include directive 

#include "dtime.h"
Display 9.1
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#include " " or < > ?
 To include a predefined header file use < and >

#include <iostream>
 < and > tells the compiler to look where the system

stores predefined  header files
 To include a header file you wrote, use " and "

#include "dtime.h"
 " and " usually cause the compiler to look 

in the current directory for the header file
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The Implementation File
 Contains the definitions of the ADT functions
 Usually has the same name as the header file but

a different suffix
 Since our header file is named dtime.h,  the 

implementation file is named dtime.cpp
 Suffix depends on your system 

(some use .cxx or .CPP)
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#include "dtime.h"
 The implementation file requires an include 

directive to include the interface file:

#include "dtime.h"

Display 9.2 (1)
Display 9.2 (2)
Display 9.2 (3)
Display 9.2 (4)
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The Application File
 The Application file is the file that contains the 

program that uses the ADT
 It is also called a driver file
 Must use an include directive to include the 

interface file:
#include "dtime.h"

Display 9.3
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Running The Program
 Basic steps required to run a program:

(Details vary from system to system!)

 Compile the implementation file

 Compile the application file

 Link the files to create an executable program using 
a utility called a linker
 Linking is often done automatically
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Compile dtime.h ?
 The interface file is not compiled separately

 The preprocessor replaces any occurrence of 
#include "dtime.h" with the text of dtime.h before 
compiling 

 Both the implementation file and the 
application file contain #include "dtime.h"
 The text of dtime.h is seen by the compiler in each of 

these files
 There is no need to compile dtime.h separately
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Why Three Files?
 Using separate files permits

 The ADT to be used in other programs without
rewriting the definition of the class for each

 Implementation file to be compiled once even 
if multiple programs use the ADT

 Changing the implementation file does not 
require changing the program using the ADT
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Reusable Components
 An ADT coded in separate files can be used 

over and over
 The reusability of such an ADT class 

 Saves effort since it does not need to be 
 Redesigned
 Recoded
 Retested

 Is likely to result in more reliable components
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Multiple Classes
 A program may use several classes

 Each could be stored in its own interface and 
implementation files
 Some files can "include" other files, that include still others

 It is possible that the same interface file could be 
included in multiple files

 C++ does not allow multiple declarations of a class
 The #ifndef directive can be used to prevent 

multiple declarations of a class
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Introduction to  #ifndef
 To prevent multiple declarations of a class,

we can use these directives:
 #define DTIME_H 

adds DTIME_H to a list indicating DTIME_H has 
been seen

 #ifndef  DTIME_H
checks to see if DTIME_H has been defined 

 #endif
If DTIME_H has been defined, skip to #endif
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Using #ifndef
 Consider this code in the interface file:

#ifndef DTIME_H
#define DTIME_H
< The DigitalTime class

definition goes here>
#endif

 The first time a #include "dtime.h" is found, 
DTIME_H and the class are defined

 The next time a #include "dtime.h" is found, 
all lines between #ifndef and #endif are skipped

true false
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Why DTIME_H?
 DTIME_H is the normal convention for 

creating an identifier to use with ifndef
 It is the file name in all caps
 Use ' _ ' instead of ' . '

 You may use any other identifier, but will make
your code more difficult to read

Display 9.4
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Defining Libraries
 You can create your own libraries of functions

 You do not have to define a class to use separate
files

 If you have a collection of functions…
 Declare them in a header file with their comments
 Define them in an implementation file
 Use the library files just as you use your class interface

and implementation files
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Section 9.1 Conclusion
 Can you

 Determine which belongs to the interface, 
implementation or application files?
 Class definition
 Declaration of a non-member function used as an 

operation of the ADT
 Definition of a member function
 The main part of the program

 Describe the difference between a C++ class and an
ADT?
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Namespaces
 A namespace is a collection of name definitions,

such as class definitions and variable declarations

 If a program uses classes and functions written by 
different programmers, it may be that the same name
is used for different things

 Namespaces help us deal with this problem

9.2
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The Using Directive
 #include <iostream> places names such as cin

and cout in the std namespace
 The program does not know about names in the

std namespace until you add
using namespace std;

(if you do not use the std namespace, you can
define cin and cout to behave differently)
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The Global Namespace
 Code you write is in a namespace

 it is in the global namespace unless you specify 
a namespace

 The global namespace does not require the 
using directive
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Name Conflicts
 If the same name is used in two namespaces

 The namespaces cannot be used at the same time
 Example: If  my_function is defined in 

namespaces ns1 and ns2,  the two versions of 
my_function could be used in one program 
by using local using directives this way:

{
using namespace ns1;
my_function( );

}

{
using namespace ns2;
my_function( );

}
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Scope Rules For using
 A block is a list of statements enclosed in { }s
 The scope of a using directive is the block in 

which it appears
 A using directive placed at the beginning of a 

file, outside any block, applies to the entire file
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Creating a Namespace
 To place code in a namespace

 Use a namespace grouping
 namespace Name_Space_Name

{
Some_Code

}

 To use the namespace created
 Use the appropriate using directive

 using namespace Name_Space_Name;
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Namespaces:
Declaring a Function

 To add a function to a namespace
 Declare the function in a namespace grouping

namespace savitch1
{

void greeting( );
}
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Namespaces:
Defining a Function

 To define a function declared in a namespace
 Define the function in a namespace grouping

namespace savitch1
{

void greeting( )
{

cout << "Hello from namespace savitch1.\n";
}

}
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Namespaces:
Using a Function

 To use a function defined in a namespace
 Include the using directive in the program where

the namespace is to be used
 Call the function as the function would normally

be called
int main( )

{
{ 

using namespace savitch1;
greeting( );

}
Using directive's scope Display 9.5 (1-2)
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A Namespace Problem
 Suppose you have the namespaces below:

 Is there an easier way to use both namespaces
considering that my_function is in both?

namespace ns1
{

fun1( );
my_function( );

}

namespace ns2
{

fun2( );
my_function( );

}
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Qualifying Names
 Using declarations (not directives) allow us to 

select individual functions to use from 
namespaces
 using ns1::fun1; //makes only fun1 in ns1 available 

 The scope resolution operator identifies a namespace here
 Means we are using only namespace ns1's version of fun1

 If you only want to use the function once, call it 
like this

ns1::fun1( );
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Qualifiying Parameter Names
 To qualify the type of a parameter with a 

using declaration
 Use the namespace and the type name

int get_number (std::istream input_stream)
…

 istream is the istream defined in namespace std
 If istream is the only name needed from namespace std, 

then you do not need to use
using namespace std;
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Directive/Declaration 
(Optional)

 A using declaration (using std::cout;) makes 
only one name available from the namespace

 A using directive makes all the names in the 
namespace available
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A Subtle Point (Optional)
 A using directive potentially introduces a name
 If ns1 and ns2 both define my_function,

using namespace ns1;
using namespace ns2;

is OK, provided my_function is never used!
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A Subtle Point Continued
 A using declaration introduces a name into your 

code: no other use of the name can be made

using ns1::my_function;
using ns2::my_function;

is illegal, even if my_function is never used
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Unnamed Namespaces
 As we have done helper functions so far, they 

are not really hidden  (Display 9.2)
 We would like them to be local to the implementation

file to implement information hiding
 The unnamed namespace can hide helper

functions
 Names defined in the unnamed namespace are 

local to the compilation unit
 A compilation unit is a file (such as an implementation file)

plus any file(s) #included in the file
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The unnamed grouping
 Every compilation unit has an unnamed 

namespace
 The namespace grouping is written as any other 

namespace, but no name is given:

namespace 
{

void sample_function( )
…

}  //unnamed namespace
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Names In The 
unnamed namespace

 Names in the unnamed namespace
 Can be reused outside the compilation unit
 Can be used in the compilation unit 

without a namespace qualifier
 The rewritten version of the DigitalTime

interface is found in                      while the

implementation file is shown in   

Display 9.6

Display 9.7 (1)
Display 9.7 (2)
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Namespaces 
In An Application

 The application file for the DigitalTime ADT is
shown in Display 9.8 (1)

Display 9.8 (2)
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Compilation Units Overlap
 A header file is #included in two files

 It is in two compilation units
 Participates in two unnamed namespaces!
 This is OK as long as each of the compilation

units makes sense independent of the other
 A name in the header file's unnamed namespace 

cannot be defined again in the unnamed namespace of the
implementation or application file
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Naming Namespaces
 To avoid choosing a name for a namespace that

has already been used
 Add your last name to the name of the namespace

 Or, use some other unique string
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Global or unnamed?
 Names in the global namespace have global 

scope (all files)
 They are available without a qualifier to all the 

program files
 Names in the unnamed namespace are local to

a compilation unit
 They are available without a qualifier within the 

compilation unit
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Section 9.2 Conclusion
 Can you

 Explain the purpose of using interface and 
implementation files?

 Describe a namespace?

 Demonstrate three ways to use the names in a 
namespace?
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Chapter 9 -- End
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Display 9.1 Back Next
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Display 9.2
(1/4) Back Next
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Display 9.2
(2/4) Back Next
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Display 9.2
(3/4) Back Next
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Display 9.2
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Display 9.3 Back Next
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Display 9.4 Back Next
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Display 9.5
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Display 9.5
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Display 9.6 Back Next
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Display 9.7
(1/2) Back Next



Slide 62

Display 9.7
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Display 9.8
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